MuscleDBs

From Muscle
Revision as of 14:35, 17 July 2019 by Akberdinir@gmail.com (talk | contribs) (Created page with "===Introduction=== Skeletal muscles have indispensable functions in human body and also possess prominent regenerative ability. The rapid emergence of Next Generation Sequenci...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Introduction

Skeletal muscles have indispensable functions in human body and also possess prominent regenerative ability. The rapid emergence of Next Generation Sequencing (NGS) data in recent years offers us an unprecedented perspective to understand gene regulatory networks governing skeletal muscle development and regeneration. However, the data from public NGS database are often in raw data format or processed with different procedures, causing obstacles to make full use of them (Yuan et al., 2019) [1]. Herein, we have integrated all information about current databases developed to represent disparate and heterogeneous omics data (with a focus on transcriptomics data) generated for skeletal muscle in different species.


Databases

MuscleDB

Analysis of the model suggested that metabolic activation and recruitment of muscle fibers are closely related, but the degree of metabolic activation inferred from metabolite changes may differ from that of the fiber recruitment. Simulations with a mechanistic, mathematical model demonstrated that the activation as measured by metabolic response in single fibers is distinct from fiber recruitment that is characterized by the number (or mass) of each fiber type involved during a specific exercise. The results from this study underline the need for critical experiments that measure fiber recruitment and metabolism in order to simulate and quantify the contributions of type I and II fibers to the regulation of energy metabolism. Such experimental techniques could be used in combination with the computational model to investigate the relationships between the extents of metabolic activation, number of fibers recruited, and muscle groups engaged at different intensity exercise.

GeneXX

SKmDB

MGS resource

NeuroMuscleDB

[Human Skeletal Muscle Proteome Project]

SkeletalVis

Summarized table of the databases

Database Short description Data type Functionality Statistics Current status Reference

BIOMD0000000248

Lai2007_O2_Transport_Metabolism.

The mathematical model simulates oxygen transport and metabolism in skeletal muscle in response to a step change from a warm-up steady state to a higher work rate corresponding to exercise at different levels of intensity: moderate (M), heavy (H) and very heavy (VH).

Lai et al., 2007 [2]

Relevant

Relevant

Relevant

Table1. Summarized table of the databases with transcriptomics data generated for skeletal muscle in different species.

References

  1. Yuan J, Zhou J, Wang H, and Sun H. SKmDB: an integrated database of next generation sequencing information in skeletal muscle. Bioinformatics. 2019 Mar 1;35(5):847-855. DOI:10.1093/bioinformatics/bty705 | PubMed ID:30165538 | HubMed [1]
  2. Saucerman JJ and Bers DM. Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J. 2008 Nov 15;95(10):4597-612. DOI:10.1529/biophysj.108.128728 | PubMed ID:18689454 | HubMed [28]
  3. Baker JS, McCormick MC, and Robergs RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutr Metab. 2010;2010:905612. DOI:10.1155/2010/905612 | PubMed ID:21188163 | HubMed [2]
  4. Schönekess BO, Brindley PG, and Lopaschuk GD. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Can J Physiol Pharmacol. 1995 Nov;73(11):1632-40. DOI:10.1139/y95-725 | PubMed ID:8789418 | HubMed [3]
  5. Cohen P. The role of calcium ions, calmodulin and troponin in the regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem. 1980 Oct;111(2):563-74. DOI:10.1111/j.1432-1033.1980.tb04972.x | PubMed ID:6780344 | HubMed [4]
  6. Sola-Penna M, Da Silva D, Coelho WS, Marinho-Carvalho MM, and Zancan P. Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life. 2010 Nov;62(11):791-6. DOI:10.1002/iub.393 | PubMed ID:21117169 | HubMed [5]
  7. Korzeniewski B. Regulation of oxidative phosphorylation through parallel activation. Biophys Chem. 2007 Sep;129(2-3):93-110. DOI:10.1016/j.bpc.2007.05.013 | PubMed ID:17566629 | HubMed [6]
  8. Glancy B, Willis WT, Chess DJ, and Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013 Apr 23;52(16):2793-809. DOI:10.1021/bi3015983 | PubMed ID:23547908 | HubMed [7]
  9. Territo PR, Mootha VK, French SA, and Balaban RS. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 2000 Feb;278(2):C423-35. DOI:10.1152/ajpcell.2000.278.2.C423 | PubMed ID:10666039 | HubMed [8]
  10. Olesen J, Kiilerich K, and Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010 Jun;460(1):153-62. DOI:10.1007/s00424-010-0834-0 | PubMed ID:20401754 | HubMed [9]
  11. Popov DV, Lysenko EA, Kuzmin IV, Vinogradova V, and Grigoriev AI. Regulation of PGC-1α Isoform Expression in Skeletal Muscles. Acta Naturae. 2015 Jan-Mar;7(1):48-59. PubMed ID:25927001 | HubMed [10]
  12. Miura S, Kai Y, Kamei Y, and Ezaki O. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise. Endocrinology. 2008 Sep;149(9):4527-33. DOI:10.1210/en.2008-0466 | PubMed ID:18511502 | HubMed [11]
  13. Yoshioka T, Inagaki K, Noguchi T, Sakai M, Ogawa W, Hosooka T, Iguchi H, Watanabe E, Matsuki Y, Hiramatsu R, and Kasuga M. Identification and characterization of an alternative promoter of the human PGC-1alpha gene. Biochem Biophys Res Commun. 2009 Apr 17;381(4):537-43. DOI:10.1016/j.bbrc.2009.02.077 | PubMed ID:19233136 | HubMed [12]
  14. Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, and Gettys TW. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem. 2009 Nov 20;284(47):32813-26. DOI:10.1074/jbc.M109.037556 | PubMed ID:19773550 | HubMed [13]
  15. Thom R, Rowe GC, Jang C, Safdar A, White JP, and Arany Z. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by N terminus peroxisome proliferator-associated receptor gamma coactivator (NT-PGC)-1α. J Biol Chem. 2015 Aug 7;290(32):19543. DOI:10.1074/jbc.A113.512061 | PubMed ID:26254272 | HubMed [14]
  16. Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, and Gettys TW. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem. 2012 Mar 16;287(12):9100-11. DOI:10.1074/jbc.M111.320200 | PubMed ID:22282499 | HubMed [15]
  17. Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, Ding S, and Hood DA. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep. 2014 May 1;2(5). DOI:10.14814/phy2.12008 | PubMed ID:24843073 | HubMed [16]
  18. Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, and Gustafsson T. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1092-8. DOI:10.1152/ajpendo.00119.2011 | PubMed ID:21862727 | HubMed [17]
  19. Ydfors M, Fischer H, Mascher H, Blomstrand E, Norrbom J, and Gustafsson T. The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle. Physiol Rep. 2013 Nov;1(6):e00140. DOI:10.1002/phy2.140 | PubMed ID:24400142 | HubMed [18]
  20. Popov DV, Bachinin AV, Lysenko EA, Miller TF, and Vinogradova OL. Exercise-induced expression of peroxisome proliferator-activated receptor γ coactivator-1α isoforms in skeletal muscle of endurance-trained males. J Physiol Sci. 2014 Sep;64(5):317-23. DOI:10.1007/s12576-014-0321-z | PubMed ID:24907054 | HubMed [19]
  21. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, and Arany Z. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21401-6. DOI:10.1073/pnas.0909131106 | PubMed ID:19966219 | HubMed [20]
  22. Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, and Ezaki O. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β₂-adrenergic receptor activation. Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E341-9. DOI:10.1152/ajpendo.00400.2010 | PubMed ID:21098736 | HubMed [21]
  23. Wen X, Wu J, Chang JS, Zhang P, Wang J, Zhang Y, Gettys TW, and Zhang Y. Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 α mRNA in mouse skeletal muscle. Biomed Res Int. 2014;2014:402175. DOI:10.1155/2014/402175 | PubMed ID:25136584 | HubMed [22]
  24. Popov DV, Lysenko EA, Vepkhvadze TF, Kurochkina NS, Maknovskii PA, and Vinogradova OL. Promoter-specific regulation of PPARGC1A gene expression in human skeletal muscle. J Mol Endocrinol. 2015 Oct;55(2):159-68. DOI:10.1530/JME-15-0150 | PubMed ID:26293291 | HubMed [23]
  25. Röckl KS, Witczak CA, and Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life. 2008 Mar;60(3):145-53. DOI:10.1002/iub.21 | PubMed ID:18380005 | HubMed [24]
  26. https://link.springer.com/content/pdf/10.1007/978-3-540-69389-5_14.pdf [25]
  27. Shin SY, Choo SM, Kim D, Baek SJ, Wolkenhauer O, and Cho KH. Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Lett. 2006 Oct 30;580(25):5965-73. DOI:10.1016/j.febslet.2006.09.064 | PubMed ID:17046757 | HubMed [26]
  28. Shannon TR, Wang F, and Bers DM. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophys J. 2005 Dec;89(6):4096-110. DOI:10.1529/biophysj.105.068734 | PubMed ID:16169970 | HubMed [27]
  29. Groenendaal W, Jeneson JA, Verhoog PJ, van Riel NA, Ten Eikelder HM, Nicolay K, and Hilbers PA. Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics. IET Syst Biol. 2008 Nov;2(6):411-22. DOI:10.1049/iet-syb:20070050 | PubMed ID:19045836 | HubMed [29]
  30. https://e-space.mmu.ac.uk/315671/1/SENSORY%20PATHWAYS%20OF%20MUSCLE%20PHENOTYPIC%20PLASTICITY_FINAL_DEC2012.pdf [30]
  31. Eilers W, Gevers W, van Overbeek D, de Haan A, Jaspers RT, Hilbers PA, van Riel N, and Flück M. Muscle-type specific autophosphorylation of CaMKII isoforms after paced contractions. Biomed Res Int. 2014;2014:943806. DOI:10.1155/2014/943806 | PubMed ID:25054156 | HubMed [31]
  32. Bradshaw JM, Kubota Y, Meyer T, and Schulman H. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10512-7. DOI:10.1073/pnas.1932759100 | PubMed ID:12928489 | HubMed [32]
  33. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, and Waxham MN. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem. 2004 Mar 26;279(13):12484-94. DOI:10.1074/jbc.M313597200 | PubMed ID:14722083 | HubMed [33]
All Medline abstracts: PubMed | HubMed